Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption
نویسندگان
چکیده
Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.
منابع مشابه
Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
Cosensitization of broadly absorbing ruthenium metal complex dyes with highly absorptive near-infrared (NIR) organic dyes is a clear pathway to increase near-infrared light harvesting in liquid-based dye-sensitized solar cells (DSCs). In cosensitized DSCs, dyes are intimately mixed, and intermolecular charge and energy transfer processes play an important role in device performance. Here, we de...
متن کاملNarrowband light detection via internal quantum efficiency manipulation of organic photodiodes.
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetect...
متن کاملORGANIC PHOTOCONDUCTOR TTF-TCNQ (TETRATHIAFULVALENETETRACYANOQUINODIMETHANE): A POTENTIAL ROOM TEMPERATURE INFRARED DETECTOR AT 10 ?m H. R. Mohajeri Moghaddam* and N. Peyghambarian
The absorption properties of charge transfer organic semiconductor TTF-TCNQ (tetrathiafulvalene-tetracyanoquhodimete ) filmsdeposited on KBr singlecrystal, quartz and glass substrates in far infrared have been investigated. An absorption edge at ?10 ??m was observed. Photoconductivity, photoconduction efficiency and gain and photocarrier's lifetime have been measured. The results show an el...
متن کاملTransparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye
Organic photodetectors are interesting for low cost, large area optical sensing applications. Combining organic semiconductors with discrete absorption bands outside the visible wavelength range with transparent and conductive electrodes allows for the fabrication of visibly transparent photodetectors. Visibly transparent photodetectors can have far reaching impact in a number of areas includin...
متن کاملHigh-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios.
Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photore...
متن کامل